
to a response. The computational complex-
ity is that of Random Forest, O( N log
N), where M is the number of variables and
N is the number of observations. This is, in
fact, lighter than that of any of the bench-
mark methods.
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Minimum Redundancy–
Maximum Relevance 
Feature Selection
Hanchuan Peng, Chris Ding, and Fuhui Long,
Lawrence Berkeley National Laboratory

A critical issue in pattern analysis is fea-
ture selection. Instead of using all available
variables (features or attributes) in the data,
one selects a subset of features to use in the
discriminant system. Feature selection has
numerous advantages: dimension reduction
to reduce the computational cost, noise reduc-
tion to improve classification accuracy, and
more interpretable features or characteris-
tics that can help, for example, to identify
and monitor target diseases or function types.
These advantages are important in applica-
tions such as gene marker selection for
microarray gene expression profiles1,2 and
medical image morphometry.3 For exam-
ple, selecting a small set of marker genes
could be useful in discriminating between
cancerous and normal tissues.

Two general approaches to feature selec-
tion exist: filters and wrappers.4 Filter meth-
ods select features on the basis of their rele-
vance or discriminant powers with regard to
the targeted classes. Simple methods based
on mutual information and statistical tests 
(t-test, F-test) have proven effective. In this
approach, feature selection isn’t correlated

to any specific prediction methods. So, the
selected features have better generalization
properties—that is, the selected features
from training data generalize well to new
data.

Wrapper methods wrap feature selection
around a specific prediction method; the
prediction method’s estimated accuracy
directly judges a feature’s usefulness. One
can often obtain a set with a very small
number of features, which gives high accu-
racy because the features’ characteristics
match well with the learning method’s.
Wrapper methods typically require exten-
sive computation to search the best features.

One common practice of filter methods 
is to simply select the top-ranked features—
say, the top 50. A deficiency of this simple
approach is that these features could be
correlated among themselves. For the
gene-marker selection problem, if gene g is
ranked high for the classification task, the
filter method will likely select other genes
highly correlated with g. Simply combin-
ing one very effective gene with another
doesn’t necessarily form a better feature
set, because the feature set contains a cer-
tain redundancy. Several recent studies
have addressed such redundancy.3,5,6

This leads to minimum redundancy–
maximum relevance (mRMR) feature
selection;1,2 that is, selected features should
be both minimally redundant among them-
selves and maximally relevant to the target
classes. The emphasis is direct, explicit mini-
mization of redundancy.

mRMR feature selection
For categorical features (variables), we

use mutual information to measure the
level of similarity between features. Let S
denote the features subset that we’re seek-
ing and 	 the pool of all candidate features.
The minimum redundancy condition is

(1)

where I(fi,fj) is mutual information between fi
and fj, and |S| is the number of features in S.

To measure features’ level of discriminant
power when they’re differentially expressed
for different targeted classes, we again use
mutual information I(c, fi) between the tar-
geted classes c = {c1, … ,cK} (we call c the
classification variable) and the feature fi. So,
I(c, fi) quantifies the relevance of fi for the
classification task. The maximum relevance

condition is to maximize the total relevance
of all genes in S:

(2)

We obtain the mRMR feature set by
optimizing these two conditions simultane-
ously, either in quotient form

(3)
or in difference form

(4)

The exact solution to mRMR requires
O(N|S|) search to obtain (N is the number of
features in 	). In practice, a near-optimal
solution is sufficient, which the incremental-
search algorithm obtains. The first feature
is selected according to equation 3 or 4—
that is, the feature with the highest I(c, fi).
The rest of the features are selected incre-
mentally. The solution can be computed
efficiently in O(|S|
N).

For features taking continuous values,
we compute quantities such as the F-sta-
tistic between features and the classifica-
tion variable c as the score of maximum
relevance

(5)

and the average Pearson correlation coeffi-
cient of features as the score for minimum
redundancy,

(6)

where we assume that both high posi-
tive and high negative correlation mean
redundancy. We can also consider the
distance function d(fi, fj) (for example,
L1 distance) for the minimum redundancy
condition:
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Mutual information formalism
As a theoretical basis of mRMR feature

selection, we consider a more general fea-
ture-selection criterion, maximum depen-
dency (MaxDep).2 In this case, we select
the feature set Sm = {f1, f2, …, fm}, of which
the joint statistical distribution is maximally
dependent on the distribution of the classifi-
cation variable c. A convenient way to mea-
sure this statistical dependency is mutual
information,

(8)

where p(.) is the probabilistic density func-
tion. The MaxDep criterion aims to select
features Sm to maximize equation 8. Unfortu-
nately, the multivariate density p(f1, …, fm)
and p(f1, …, fm, c) are difficult to estimate
accurately when the number of samples is
limited, the usual circumstance for many fea-
ture selection problems. However, using the
standard multivariate mutual information

(9)
we can factorize equation 8 as 

I(Sm; c) = J(Sm, c) � J(Sm). (10)

Equation 10 is similar to the mRMR fea-
ture selection criterion of equation 4: The
second term requires that features Sm are
maximally independent of each other (that is,
least redundant), while the first term requires
every feature to be maximally dependent
on c. In other words, the two key parts of
mRMR feature selection are contained in
MaxDep feature selection.

Experiments on gene
expression data

We’ve found that explicitly minimizing the
redundancy term leads to dramatically better
classification accuracy. For example, for the
lymphoma data in figure 3a, the commonly
used MaxRel features lead to 13 leave-one-out
cross-validation errors (about 86 percent accu-
racy) in the best case. Selecting more than 30
mRMR features results in only one LOOCV
error (or 99.0 percent accuracy). For the lung
cancer data in figure 3b, mRMR features lead
to approximately five LOOCV errors, while

maxRel features lead to approximately 10
errors when more than 30 features are
selected. We present more extension results
elsewhere.1,2 The performance of mRMR
features is good, especially considering that
the features are selected independently of
any prediction methods.

Extension
The mRMR feature-selection method is

independent of class-prediction methods.
One can combine it with a particular predic-
tion method.2 Because mRMR features offer
broad coverage of the characteristic feature
space, one can first use mRMR to narrow
down the search space and then apply the
more expensive wrapper feature-selection
method at a significantly lower cost.
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Microarray-based analysis techniques that
query thousands of genes in a single experi-
ment present unprecedented opportunities
and challenges for data mining.1 Gene filter-
ing is a necessary step that removes noisy
measurements and focuses further analysis
on gene sets that show a strong relationship
to phenotypes of interest. The problem
becomes particularly challenging because of
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Figure 3. Average leave-one-out cross-validation errors of three different classifiers—
Naïve Bayes, Support Vector Machine, and Linear Discriminant Analysis—on two 
multiclass data sets, lymphoma (a) and lung cancer (b), which contain microarray gene
expression profiles. Lymphoma: 4,026 genes and 96 samples for nine subtypes of 
lymphoma; Lung cancer: 918 genes and 73 samples for seven lung cancer subtypes.
More information on these data sets is available elsewhere.1,2


